Formal Local Cohomology Modules and Serre Subcategories

A. Kianezhad; Science and Research Branch, Islamic Azad University A. J. Taherizadeh^{*}; Kharazmi University

A. Tehranian; Science and Research Branch, Islamic Azad University

Abstract

Let (R, m) be a Noetherian local ring, a an ideal of R and M a finitely generated Rmodule. We investigate some properties of formal local cohomology modules with respect to a Serre subcategory. We provide a common language to indicate some properties of formal local cohomology modules.

1. Introduction

Throughout this paper (R, m) is a commutative Noetherian local ring, a an ideal of *R* and *M* is a finitely generated *R*-module. For an integer $i \in \mathbb{N}_0$, $H_a^i(N)$ denotes the *i*th local cohomology module of M with respect to a as introduced by Grothendieck (cf. [1], [2].

We shall consider the family of local cohomology modules $\{H_m^i(\frac{M}{a^n M})\}_{n \in \mathbb{N}}$ for a non-negative integer $i \in \mathbb{N}_0$. With natural homomorphisms; this family forms an inverse system. Schenzel introduced the i-th formal local cohomology of M with respect to ain the form of $f_a^i(M) \coloneqq \lim_{n \in \mathbb{N}} H_m^i\left(\frac{M}{a^n M}\right)$, which is the *i*-th cohomology module of the **a**adic completion of the Čech complex $\check{c}_x \otimes_R M$, where <u>x</u> denotes a system of elements of R such that $Rad(\underline{x}, R) = m$ (see [3, Definition 3.1]). He defines the formal grade as $f.grade(a, M) = \inf \{i \in \mathbb{N}_0 \mid f_a^i(M) \neq 0\}$. For any ideal *a* of *R* and finitely generated *R*-module *M* the following statements hold:

(i) (See [3, Theorem 3.11]). If $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of finitely generated *R*-modules, then there is the following long exact sequence:

 $\dots \to f_a^i(M') \to f_a^i(M) \to f_a^i(M'') \to \dots$ **Keywords:** Local cohomology, Formal local cohomology, Serre subcategory, Formal grade, Formal cohomological dimension.

MSC (2010) 13 D 45, 13 D 07, 14 B 15.

Received: 26 Feb 2012

Revised 18 Dec 2013

^{*}Corresponding author: taheri@khu.ac.ir

(ii) (See [3, Theorem 1.3]). $f.grade(a, M) \le \dim(M) - cd(a, M)$; some properties of formal local cohomology have been presented in [3, 4, 5 and 6].

Throughout this paper S denotes a Serre subcategory of the category of R- modules and R – homomorphisms (we recall that a class S of R- modules is a Serre subcategory of the category of R- modules and R-homomorphisms if S is closed under taking submodules, quotients and extensions).

Our paper contains three sections. In Section 2, we shall define the formal grade of **a** with respect to *M* in *S* as the infimum of the integers *i* such that $f_a^i(M) \notin S$ and is denoted by $f.grade_S(a, M)$. (See definition 2.1). Then we shall obtain some properties of this notion. We show that if $\Gamma_a(M)$ is a pure submodule of *M*, then $Hom_R(\frac{R}{m}, f_a^t(\Gamma_a(M)))$ and $Hom_R(\frac{R}{m}, f_a^{t-1}(\frac{M}{\Gamma_a(M)}))$ belong to *S*, where $t = f.grade_S(a, M)$.

In Section 3, we shall define the formal cohomological dimension of a with respect to M in S as the supremum of the integers i such that $f_a^i(M) \notin S$ and is denoted by $f. cd_S(a, M)$. (See definition 3.1). The main result of this section is that if $f_a^i(M) \in S$ and $H_m^i(M) \in S$ for all i > t, then $\frac{R}{a} \bigotimes_R f_a^t(M)$ belongs to S.

2. The formal grade of a module in a Serre subcategory

Definition 2.1. The formal grade of a with respect to M in S is the infimum of the integers i such that $f_a^i(M) \notin S$ and is denoted by $f.grade_S(a, M)$.

Proposition 2.2. Let (R, m) be a local ring and a be an ideal of R. If $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is an exact sequence of finitely generated R-modules, then the following statements hold.

(a)
$$f.grade_{\mathcal{S}}(\mathbf{a}, M) \ge \min\{f.grade_{\mathcal{S}}(\mathbf{a}, L), f.grade_{\mathcal{S}}(\mathbf{a}, N)\}$$
.

(b)
$$f. grade_{\mathcal{S}}(\mathbf{a}, L) \ge \min\{f. grade_{\mathcal{S}}(\mathbf{a}, M), f. grade_{\mathcal{S}}(\mathbf{a}, N) + 1\}.$$

(c)
$$f.grade_{\mathcal{S}}(\mathbf{a}, N) \ge \min\{f.grade_{\mathcal{S}}(\mathbf{a}, L) - 1, f.grade_{\mathcal{S}}(\mathbf{a}, M)\}$$

Proof. According to [3, Theorem 3.11], the above short exact sequence induces the following long exact sequence.

$$\cdots \to f_a^{i-1}(N) \to f_a^i(L) \to f_a^i(M) \to f_a^i(N) \to f_a^{i+1}(L) \to \cdots.$$

So, the result follows.

A. Kianezhad& Et.al

Corollary 2.3. If $\underline{x} = x_1, ..., x_n$ is a regular *M*-sequence, then $f.grade_{\mathcal{S}}\left(\boldsymbol{a}, \frac{M}{\underline{x}M}\right) \ge f.grade_{\mathcal{S}}\left(\boldsymbol{a}, M\right) - n$.

Proof. Consider the following exact sequence $(n \in \mathbb{N})$ $0 \rightarrow \frac{M}{(x_1, \dots, x_{n-1})M} \xrightarrow{x_n} \frac{M}{(x_1, \dots, x_{n-1})M} \xrightarrow{nat.} \frac{M}{(x_1, \dots, x_n)M} \rightarrow 0$

whenever n = 1 by $(x_1, \dots, x_{n-1})M$ we means 0.

Corollary 2.4. Let *a* and *b* be ideals of *R*. Then

$$\min\{f. grade_{\mathcal{S}} (\boldsymbol{a} \cap \boldsymbol{b}, M) - 1, f. grade_{\mathcal{S}} (\boldsymbol{a}, M), f. grade_{\mathcal{S}} (\boldsymbol{b}, M)\}.$$

Proof. For all $n \in \mathbb{N}$ there is a short exact sequence as follows:

$$0 \to \frac{M}{a^n M \cap b^n M} \to \frac{M}{a^n M} \oplus \frac{M}{b^n M} \to \frac{M}{(a^n, b^n) M} \to 0.$$

By using [3,Theorem 5.1], the above exact sequence induces the following long exact sequence.

$$\cdots \to \frac{\lim}{n \in \mathbb{N}} H^{i}_{m}\left(\frac{M}{(a \cap b)^{n}M}\right) \to \frac{\lim}{n \in \mathbb{N}} H^{i}_{m}\left(\frac{M}{a^{n}M}\right) \bigoplus \frac{\lim}{n \in \mathbb{N}} H^{i}_{m}\left(\frac{M}{b^{n}M}\right) \to \frac{\lim}{n \in \mathbb{N}} H^{i}_{m}\left(\frac{M}{(a,b)^{n}M}\right) \to \cdots.$$

So by using an argument similar to that of Proposition 2.2, the result follows.

Corollary 2.5. Assume that *M* is a finitely generated *R*-module and *N*₁ and *N*₂ are submodules of *M*. Then considering the exact sequence $0 \rightarrow \frac{M}{N_1 \cap N_2} \rightarrow \frac{M}{N_1} \bigoplus \frac{M}{N_1} \longrightarrow \frac{M}{N_1 \cap N_2} \rightarrow 0$ we shall have

(a)
$$f. grade_{\mathcal{S}}\left(\boldsymbol{a}, \frac{M}{N_{1} \cap N_{2}}\right) \geq \min\{f. grade_{\mathcal{S}}\left(\boldsymbol{a}, \frac{M}{N_{1}}\right), f. grade_{\mathcal{S}}\left(\boldsymbol{a}, \frac{M}{N_{1}}\right)\}$$
$$(a) MN2, f. grade\mathcal{S} \boldsymbol{a}, MN1 + N2 + 1\}.$$

(b)
$$f.grade_{\mathcal{S}}\left(\boldsymbol{a},\frac{M}{N_{1}+N_{2}}\right) \geq \min\left\{f.grade_{\mathcal{S}}\left(\frac{M}{N_{1}\cap N_{2}}\right) - 1, f.grade_{\mathcal{S}}\left(\boldsymbol{a},MN1,f.gradeS\boldsymbol{a},MN2\right)\right\}$$

Theorem 2.6. Let **a** be an ideal of a local ring (R, \mathbf{m}) , M be a finitely generated Rmodule and L be a pure submodule of M. Then $f.grade_{\mathcal{S}}(\mathbf{a}, L) \ge f.grade_{\mathcal{S}}(\mathbf{a}, M)$ where \mathcal{S} is a Serre subcategory of the category of R- modules and R-homomorphisms.
In particular, inf $\{i | H^i_m(L) \notin \mathcal{S}\} \ge \inf \{i | H^i_m(M) \notin \mathcal{S}\}$.

Proof. Let *L* be a pure submodule of *M*. So $\frac{L}{a^{n_L}} \rightarrow \frac{M}{a^{n_M}}$ is pure for each $n \in \mathbb{N}$. Now according to [8, Corollary 3.2 (a)], $H_m^i\left(\frac{L}{a^{n_L}}\right) \rightarrow H_m^i\left(\frac{M}{a^{n_M}}\right)$ is injective. Since inverse limit is a left exact functor, $f_a^i(L)$ is isomorphic to a submodule of $f_a^i(M)$. Consequently, $f.grade_{\mathcal{S}}(a, L) \geq f.grade_{\mathcal{S}}(a, M)$. If a = 0 then, $f.grade_{\mathcal{S}}(0, M) = \inf \{i|H_m^i(M) \notin \mathcal{S}\}$ and the result follows.

Corollary 2.7. If $0 \to L \to M \to N \to 0$ is a pure exact sequence of finitely generated *R*-modules, then min { $f.grade_{\mathcal{S}}(\boldsymbol{a}, L)$, $f.grade_{\mathcal{S}}(\boldsymbol{a}, N) + 1$ } $\geq f.grade_{\mathcal{S}}(\boldsymbol{a}, M)$.

Proof. Since L is a pure submodules of M, as a result of the previous theorem, $f.grade_{\delta}(a, L) \ge f.grade_{\delta}(a, M)$. Hence we must prove that $f.grade_{\delta}(a, N) + 1 \ge f.grade_{\delta}(a, M)$. We assume that $i < f.grade_{\delta}(a, M)$ and we show that $i < f.grade_{\delta}(a, N) + 1$. Consider the following long exact sequence.

 $\cdots \to f_a^{i-1}(M) \to f_a^{i-1}(N) \to f_a^i(L) \to f_a^i(M) \to f_a^i(N) \to \cdots . (**)$

If $i < f.grade_{\mathcal{S}}(\boldsymbol{a}, M)$, then $f_{\boldsymbol{a}}^{0}(M), f_{\boldsymbol{a}}^{1}(M), \dots, f_{\boldsymbol{a}}^{i-1}(M), f_{\boldsymbol{a}}^{i}(M) \in \mathcal{S}$. On the other hand, since $i < f.grade_{\mathcal{S}}(\boldsymbol{a}, M) \leq f.grade_{\mathcal{S}}(\boldsymbol{a}, L), f_{\boldsymbol{a}}^{0}(L), \dots, f_{\boldsymbol{a}}^{i}(L) \in \mathcal{S}$. Hence, it follows from (**) that $f_{\boldsymbol{a}}^{0}(N), \dots, f_{\boldsymbol{a}}^{i-1}(N) \in \mathcal{S}$ and so $i - 1 < f.grade_{\mathcal{S}}(\boldsymbol{a}, N)$.

Theorem 2.8. Let (R, \mathbf{m}) be a local ring, \mathbf{a} be an ideal of R, S be a Serre subcategory of the category of R-modules and R_{-} homomorphisms and $M \in S$ be a finitely generated R-module such that $\Gamma_{\mathbf{a}}(M)$ is a pure submodule of M. Then $Hom_R\left(\frac{R}{\mathbf{a}}, f_{\mathbf{a}}^t(\Gamma_{\mathbf{a}}(M))\right) \in S$, where $t = f.grade_S(\mathbf{a}, M)$.

Proof. Due to the previous theorem, $f.grade_{\mathcal{S}}(\boldsymbol{a},\Gamma_{\boldsymbol{a}}(M)) \geq f.grade_{\mathcal{S}}(\boldsymbol{a},M)$. If $f.grade_{\mathcal{S}}(\boldsymbol{a},\Gamma_{\boldsymbol{a}}(M)) > f.grade_{\mathcal{S}}(\boldsymbol{a},M)$, then the result is obvious. Accordingly, we assume that $f.grade_{\mathcal{S}}(\boldsymbol{a},\Gamma_{\boldsymbol{a}}(M)) = f.grade_{\mathcal{S}}(\boldsymbol{a},M)$. We know that $Supp(\Gamma_{\boldsymbol{a}}(M)) \subseteq Var(\boldsymbol{a})$. By using [4, Lemma 2.3], $f_{\boldsymbol{a}}^{i}(\Gamma_{\boldsymbol{a}}(M)) \cong H_{\boldsymbol{m}}^{i}(\Gamma_{\boldsymbol{a}}(M))$ for all $i \geq 0$. So, if $j < f.grade_{\mathcal{S}}(\boldsymbol{a},M)$, then $f_{\boldsymbol{a}}^{j}(\Gamma_{\boldsymbol{a}}(M)) \cong H_{\boldsymbol{m}}^{j}(\Gamma_{\boldsymbol{a}}(M)) \in \mathcal{S}$ and $Ext_{R}^{k}(\frac{R}{m},H_{\boldsymbol{m}}^{j}(\Gamma_{\boldsymbol{a}}(M)) \in \mathcal{S}$, for all $k \geq 0$ and $j < f.grade_{\mathcal{S}}(\boldsymbol{a},M)$. Moreover $Ext_{R}^{t}(\frac{R}{m},\Gamma_{\boldsymbol{a}}(M)) \in \mathcal{S}$,

because $\Gamma_a(M) \in S$. Consequently, according to [7, Theorem 2.2],

$$Hom_R(\frac{R}{m}, H^t_m(\Gamma_a(M)) \in \mathcal{S}, \text{ where } t = f.grade_{\mathcal{S}}(a, M)$$

Corollary 2.9 With the same notations as Theorem 2.8, let $X \in S$ be a submodule of $f_a^t(\Gamma_a(M))$, where $t = f.grade_S(a, M)$. Then $Hom_R(\frac{R}{m}, \frac{f_a^t(\Gamma_a(M))}{X}) \in S$.

Proof. Consider the long exact sequence:

 $Hom_{R}\left(\frac{R}{m}, f_{a}^{t}(\Gamma_{a}(M))\right) \to Hom_{R}\left(\frac{R}{m}, \frac{f_{a}^{t}(\Gamma_{a}(M))}{X}\right) \to Ext_{R}^{1}\left(\frac{R}{m}, X\right). (*)$ In accordance with the previous theorem $Hom_{R}\left(\frac{R}{m}, f_{a}^{t}(\Gamma_{a}(M))\right) \in \mathcal{S}.$ Moreover $Ext_{R}^{1}\left(\frac{R}{m}, X\right) \in \mathcal{S}.$ It follows from the exact sequence (*) that $Hom_{R}\left(\frac{R}{m}, \frac{f_{a}^{t}(\Gamma_{a}(M))}{X}\right) \in \mathcal{S}.$

Theorem 2.10. Suppose that **a** is an ideal of (R, \mathbf{m}) and $M \in S$ is a finitely generated *R*-module such that $\Gamma_{a}(M)$ is a pure submodule of *M*. Then $Hom_{R}\left(\frac{R}{m}, f_{a}^{t-1}\left(\frac{M}{\Gamma_{a}(M)}\right)\right) \in S$, where $t = f.grade_{S}(\mathbf{a}, M)$.

Proof. One has $f.grade_{\mathcal{S}}(\boldsymbol{a}, \Gamma_{\boldsymbol{a}}(M)) \ge f.grade_{\mathcal{S}}(\boldsymbol{a}, M)$, by Theorem 2.6. Now, the exact sequence $0 \to \Gamma_{\boldsymbol{a}}(M) \to M \to \frac{M}{\Gamma_{\boldsymbol{a}}(M)} \to 0$ induces the following long exact sequence:

$$\cdots \xrightarrow{\alpha} f_a^{t-1} \Big(\Gamma_a(M) \Big) \xrightarrow{\beta} f_a^{t-1}(M) \xrightarrow{\gamma} f_a^{t-1} \Big(\frac{M}{\Gamma_a(M)} \Big) \xrightarrow{\xi} f_a^t \Big(\Gamma_a(M) \Big) \xrightarrow{\varphi} \cdots (*)$$

Using the exact sequence (*), we obtain the short exact sequence $0 \to \text{Im}(\beta) \to f_a^{t-1}(M) \to Im(\gamma) \to 0$. Since $f_a^{t-1}(M) \in S$, $\text{Im}(\beta) \in S$ and $Im(\gamma) \in S$. Furthermore, we have the exact sequence $0 \to \text{Im}(\xi) \to H_m^t(\Gamma_a(M)) \to Im(\varphi) \to 0$ which induces the following long exact sequence:

$$0 \to Hom_R(\frac{R}{m}, \operatorname{Im}(\xi)) \to Hom_R(\frac{R}{m}, H^t_m(\Gamma_a(M))) \to \cdots$$

Thus $Hom_R(\frac{R}{m}, Im(\xi)) \in S$. Finally, by considering the short exact sequence $0 \to Im(\gamma) \to f_a^{t-1}\left(\frac{M}{\Gamma_a(M)}\right) \to Im(\xi) \to 0$ we can conclude that $Hom_R\left(\frac{R}{m}, f_a^{t-1}\left(\frac{M}{\Gamma_a(M)}\right)\right) \in S$.

Theorem 2.11. Suppose that R is complete with respect to the <u>a</u>-adic topology and $M \in S$ be a finitely generated R-module and t a positive integer such that $f_a^i(M) \in S$ for all i < t. Then $Hom_R\left(\frac{R}{m}, f_a^t(M)\right) \in S$.

Proof.We use induction on t. Let t=0. Consider the following isomorphisms.

$$Hom_{R}(\frac{R}{\underline{m}}, f_{\underline{a}}^{0}(M)) \cong \lim_{\underline{\leftarrow}_{n\in\mathbb{N}}} Hom_{R}(\frac{R}{\underline{m}}, H_{\underline{m}}^{0}(\underline{\underline{M}})) \cong \lim_{\underline{\leftarrow}_{n\in\mathbb{N}}} Hom_{R}(\frac{R}{\underline{m}}, \underline{\underline{M}})$$
$$\cong Hom_{R}(\frac{R}{\underline{m}}, \lim_{\underline{\leftarrow}_{n\in\mathbb{N}}} (\underline{\underline{M}})) \cong Hom_{R}(\frac{R}{\underline{m}}, \hat{M}^{\underline{a}}) \cong Hom_{R}(\frac{R}{\underline{m}}, M)$$

A. Kianezhad& Et.al

It is clear that $Hom_R(\frac{R}{\underline{m}}, M) \in S$. So by the above isomorphisms, we deduce that $Hom_R(\frac{R}{\underline{m}}, f_{\underline{a}}^0(M)) \in S$.

Suppose that t>0 and the result is true for all integer i less than t. Set N:= $\Gamma_{\mathbf{m}}(M)$. Then $f_a^i(M) \cong f_a^i\left(\frac{M}{N}\right)$ for all i > 0, and so we may assume that $depth_R(M) > 0$. There is an M - regular element $x \in \mathbf{m}$. The exact sequence $0 \to M \xrightarrow{x} M \to \frac{M}{xM} \to 0$ induces the following long exact sequence:

$$\cdots \to f_{a}^{t-2}(M) \xrightarrow{x} f_{a}^{t-2}(M) \xrightarrow{f} f_{a}^{t-2}\left(\frac{M}{xM}\right)$$
$$\to f_{a}^{t-1}(M) \xrightarrow{x} f_{a}^{t-1}(M) \xrightarrow{g} f_{a}^{t-1}\left(\frac{M}{xM}\right)$$
$$\to f_{a}^{t}(M) \xrightarrow{x} f_{a}^{t}(M) \xrightarrow{h} \cdots (*)$$

Using the exact sequence (*) we obtain the short exact sequence

$$0 \rightarrow \frac{f_a^{t-1}(M)}{x f_a^{t-1}(M)} \rightarrow f_a^{t-1}\left(\frac{M}{xM}\right) \rightarrow \left(0 : x_{f_a^{t}(M)}\right) \rightarrow 0.$$

Now, this exact sequence induces the following long exact sequence:

$$0 \to Hom_{R}\left(\frac{R}{m}, \frac{f_{a}^{t-1}(M)}{xf_{a}^{t-1}(M)}\right) \to Hom_{R}\left(\frac{R}{m}, f_{a}^{t-1}\left(\frac{M}{xM}\right)\right) \to Hom_{R}\left(\frac{R}{m}, \left(0; x_{f_{a}^{t}(M)}\right)\right) \to Ext_{R}^{1}\left(\frac{R}{m}, \frac{f_{a}^{t-1}(M)}{xf_{a}^{t-1}(M)}\right) \to \cdots. (**)$$

By using (*), $f_a^i\left(\frac{M}{xM}\right) \in S$ for all i < t - 1. Therefore by the induction hypothesis $Hom_R\left(\frac{R}{m}, f_a^{t-1}\left(\frac{M}{xM}\right)\right) \in S$. Furthermore $Ext_R^1\left(\frac{R}{m}, \frac{f_a^{t-1}(M)}{xf_a^{t-1}(M)}\right) \in S$ because $f_a^{t-1}(M) \in S$. Thus in accordance with (**), $Hom_R\left(\frac{R}{m}, (0:x)\right) \in S$. Since $x \in m$ according to [9,10.86] we have the following isomorphisms.

$$Hom_{f_{a}^{t}(M)}\left(\frac{R}{m}, (0:x)\right) \cong Hom_{R}\left(\frac{R}{m}, Hom_{R}\left(\frac{R}{xR}, f_{a}^{t}(M)\right)\right) \cong Hom_{R}\left(\frac{R}{m}\otimes_{R}\frac{R}{xR}, f_{a}^{t}(M)\right) \cong Hom_{R}\left(\frac{R}{m}, f_{a}^{t}(M)\right).$$

Consequently $Hom_R\left(\frac{R}{m}, f_a^t(M)\right) \in \mathcal{S}$.

3. The formal cohomological dimension in a Serre subcategory

We recall from [3,Theorem 1.1] that for a finitely generated *R*-module *M*, $\sup\{i \in \mathbb{N}_0 | f_a^i(M) \neq 0\} = \dim(\frac{M}{aM}).$

Definition 3.1. The formal cohomological dimension of M with respect to <u>a</u> in S is The supremum of the integers *i* such that $f_a^i(M) \notin S$ and is denoted by $f.cd_S(a, M)$.

Theorem 3.2. Suppose that S is a Serre subcategory of the category of R-modules and R – homomorphisms and L and N are two finitely generated R-modules such that $Supp_R(L) \subseteq Supp_R(N)$. Then $f.cd_S(\boldsymbol{a}, L) \leq f.cd_S(\boldsymbol{a}, N)$.

Proof. It is enough to prove that $f_a^i(L) \in S$ for all $i > f.cd_S(a, N)$ and all finitely generated *R*-module *L* such that $Supp_R(L) \subseteq Supp_R(N)$. We use descending induction on i.For all $i > \dim(\frac{L}{aL}) + f.cd_S(a, N)$, $f_a^i(L) = 0 \in S$. Let $i > f.cd_S(a, N)$ and the result is proved for i + 1. By Gruson's theorem, there is a chain $0 = L_0 \subset L_1 \subset \cdots \subset$ $L_l = L$ of submodules of *L* such that $\frac{L_i}{L_{i-1}}$ is a homomorfic image of a direct sum of finitely many copies of *N*. Consider the exact sequence $0 \to L_{i-1} \to L_i \to \frac{L_i}{L_{i-1}} \to 0$ (i = 0, 1, ..., l). We may assume that l = 1. The exact sequence $0 \to K \to \bigoplus_{j=1}^t N \to$ $L \to 0$ where *K* is a finitely generated *R*-module iduces the following long exact sequence:

$$\cdots \to f_a^i \bigl(\bigoplus_{j=1}^t N \bigr) \to f_a^i(L) \to f_a^{i+1}(K) \to \cdots . (*)$$

Based on the induction hypothesis $f_a^{i+1}(K) \in S$. Moreover $f_a^i (\bigoplus_{j=1}^t N) = \bigoplus_{j=1}^t f_a^i(N) \in S$ for all $i > f.cd_S(a, N)$. Hence it follows from the exact sequence (*) that $f_a^i(L) \in S$.

The next example shows that even if $Supp_R(M) = Supp_R(N)$, then it may not true that $f.grade_S(\mathbf{a}, M) = f.grade_S(\mathbf{a}, N)$.

Example 3.3. (See [4, Example 4.3 (i)]) Let (R, \mathbf{m}) be a 2 dimensional complete regular local ring, S = 0 and \mathbf{a} be an ideal of R with $\dim\left(\frac{R}{a}\right) = 1$. Then by using [5,Theorem 1.1], $f.grade_{S}(\mathbf{a}, R) = 1$ and $f.grade_{S}\left(\mathbf{a}, \frac{R}{m}\right) = 0$. Set $M := R \oplus \frac{R}{m}$. Then $Supp_{R}(M) = Supp_{R}(R)$. But

$$f.grade_{\mathcal{S}}(\boldsymbol{a}, M) = \inf\left\{f.grade_{\mathcal{S}}(\boldsymbol{a}, R), f.grade_{\mathcal{S}}\left(\boldsymbol{a}, \frac{R}{m}\right)\right\} = 0.$$

Corollary3.4. For all $x \in a$, $f.cd_{\mathcal{S}}(a, M) \ge f.cd_{\mathcal{S}}(a, \frac{M}{xM})$.

Corollary3.5. Suppose that $0 \to L \to M \to N \to 0$ is an exact sequence of finitely generated *R*-modules. Then $f.cd_{\mathcal{S}}(\boldsymbol{a}, M) = \max \{f.cd_{\mathcal{S}}(\boldsymbol{a}, L), f.cd_{\mathcal{S}}(\boldsymbol{a}, N)\}.$

A. Kianezhad& Et.al

Proof. Since $Supp_R(M) = Supp_R(L) \cup Supp_R(N)$ by referring to Theorem 3.2 we deduce that $f.cd_{\delta}(\boldsymbol{a}, M) \ge f.cd_{\delta}(\boldsymbol{a}, L)$ and $f.cd_{\delta}(\boldsymbol{a}, M) \ge f.cd_{\delta}(\boldsymbol{a}, N)$. Therefore $f.cd_{\delta}(\boldsymbol{a}, M) \ge max \{f.cd_{\delta}(\boldsymbol{a}, L), f.cd_{\delta}(\boldsymbol{a}, N)\}.$

Next we prove that $max \{f.cd_{\mathcal{S}}(\boldsymbol{a}, L), f.cd_{\mathcal{S}}(\boldsymbol{a}, N)\} \ge f.cd_{\mathcal{S}}(\boldsymbol{a}, M).$

Let $i > max \{ f.cd_{\mathcal{S}}(\boldsymbol{a}, L), f.cd_{\mathcal{S}}(\boldsymbol{a}, N) \}$. Then $f_{\boldsymbol{a}}^{i}(N), f_{\boldsymbol{a}}^{i}(L) \in \mathcal{S}$ and from the exact sequence $f_{\boldsymbol{a}}^{i}(L) \to f_{\boldsymbol{a}}^{i}(M) \to f_{\boldsymbol{a}}^{i}(N)$ we conclude that $f_{\boldsymbol{a}}^{i}(M) \in \mathcal{S}$. Thus, $max\{f.cd_{\mathcal{S}}(\boldsymbol{a}, L), f.cd_{\mathcal{S}}(\boldsymbol{a}, N)\} \ge f.cd_{\mathcal{S}}(\boldsymbol{a}, M)$.

We recall that the cohomological dimension of an *R*-module *M* with respect to an ideal a of *R* in *S* is defind as

$$cd_{\mathcal{S}}(\boldsymbol{a}, M) := \sup \{i \in \mathbb{N}_{\theta} | H^{i}_{\boldsymbol{a}}(M) \notin \mathcal{S} \}.$$

The following lemma shows that when we considering the Artinianness of $f_a^i(M)$, we can assume that M is *a*-torsion-free.

Lemma 3.6. Suppose that a is an ideal of a local ring (R, m) and t be a non-negative integer. If $H_m^i(M) \in S$ for all $i \ge t$, then the following are equivalent:

(a)
$$f_a^i(M) \in S$$
 for all $i \ge t$.

(b) $f_a^i\left(\frac{M}{\Gamma_{-}(M)}\right) \in \mathcal{S} \text{ for all } i \ge t.$

Proof. According to the hypothesis $t > cd_{\delta}(\boldsymbol{m}, M)$. On the other hand $Supp_{R}(\Gamma_{\boldsymbol{a}}(M)) \subseteq$ $Supp_{R}(M)$. So by referring to [7,Theorem 3.5], $cd_{\delta}(\boldsymbol{m}, \Gamma_{\boldsymbol{a}}(M)) \leq cd_{\delta}(\boldsymbol{m}, M)$. Thus, $t > cd_{\delta}(\boldsymbol{m}, \Gamma_{\boldsymbol{a}}(M))$ and $H^{i}_{\boldsymbol{m}}(\Gamma_{\boldsymbol{a}}(M)) \in \mathcal{S}$ for all $i \geq t$. Now, consider the following long exact sequence:

$$\cdots \to f_a^i(\Gamma_a(M)) \to f_a^i(M) \to f_a^i\left(\frac{M}{\Gamma_a(M)}\right) \to f_a^{i+1}(\Gamma_a(M)) \to \cdots . (*)$$

According to [4,Lemma 2.3] $f_a^i(\Gamma_a(M)) \cong H_m^i(\Gamma_a(M))$. By using the hypothesis $f_a^i(\Gamma_a(M)) \in S$ for all $i \ge t$. So it follows from the exact sequence (*) that $f_a^i(M) \in S$ if and only if $f_a^i(\frac{M}{\Gamma_a(M)}) \in S$ for all $i \ge t$.

Theorem 3.7. Let (R, m) be a local ring and $M \in S$ be a finitely generated R-module of dimension d such that $cd_{\mathcal{S}}(m, M) \leq f. cd_{\mathcal{S}}(a, M)$. Then $\frac{f_a^t(M)}{af_a^t(M)} \in S$ where $t = f. cd_{\mathcal{S}}(a, M)$.

Proof. We use induction on $d = \dim(M)$. If d = 0, then $\dim\left(\frac{M}{aM}\right) = 0$. Accordingly to [3, Theorem 1.1], $f_a^i(M) = 0$ for all i > 0.

Moreover $f_a^0(M) \cong M \in S$. By definition $H_m^i(M) \in S$ for all i > t. Therefore from the above lemma we can assume that M is *a*-torsion-free and there is an M-regular element $x \in a$. Consider the long exact sequence :

$$\cdots \to f_a^i(M) \xrightarrow{x} f_a^i(M) \xrightarrow{f} f_a^i\left(\frac{M}{xM}\right) \xrightarrow{g} f_a^{i+1}(M) \xrightarrow{h} \cdots (*)$$

By using the hypothesis $f_a^i(M) \in S$ for all i > t (because $t = f. cd_S(a, M)$). So using the above long exact sequence $f_a^i\left(\frac{M}{xM}\right) \in S$ for all i > t. By induction hypothesis, $\frac{f_a^t\left(\frac{M}{xM}\right)}{af_a^t\left(\frac{M}{xM}\right)} \in S$ because dim $\left(\frac{M}{xM}\right) = \dim(M) - I$.

Afterwards from the exact sequence (*) we get the following short exact sequence.

$$0 \to Im(f) \to f_a^t\left(\frac{M}{xM}\right) \to Im(g) \to 0$$

So we obtain the following long exact sequence.

$$\dots \to Tor_{l}^{R}\left(\frac{R}{a}, Im(g)\right) \to \frac{Im(f)}{aIm(f)} \to \frac{f_{a}^{t}\left(\frac{M}{xM}\right)}{af_{a}^{t}\left(\frac{M}{xM}\right)} \to \frac{Im(g)}{aIm(g)} \to 0$$

Since $f_a^t(M) \in S$ and Im(g) is a submodule of $f_a^{t+1}(M)$, we deduce that $Tor_l^R(\frac{R}{a}, Im(g)) \in S$. On the other hand, $\frac{f_a^t(\frac{M}{xM})}{af_a^t(\frac{M}{xM})} \in S$. Therefore, $\frac{Im(f)}{aIm(f)} \in S$ by the

above long exact sequence.

Now, consider the following long exact sequence.

$$\frac{f_a^t(M)}{af_a^t(M)} \xrightarrow{x} \frac{f_a^t(M)}{af_a^t(M)} \rightarrow \frac{Im(f)}{aIm(f)} \rightarrow 0.$$

So, $\frac{f_a^t(M)}{af_a^t(M)} \cong \frac{Im(f)}{aIm(f)}$ because $x \in a$. Consequently, $\frac{f_a^t(M)}{af_a^t(M)} \in S$.

Proposition 3.8. For a finitely generated *R*-module *M*,

$$f.cd_{\mathcal{S}}(\boldsymbol{a}, M) = max \{f.cd_{\mathcal{S}}(\boldsymbol{a}, \frac{R}{P}) | P \in Ass_{R}(M) \}.$$

Proof. Set $N := \bigoplus_{P \in ASS_R(M)} \frac{R}{P}$. Then $Supp_R(M) = Supp_R(N)$. So, by Theorem 3.2 and Corollary 3.5, $f.cd_{\mathcal{S}}(\boldsymbol{a}, M) = f.cd_{\mathcal{S}}(\boldsymbol{a}, N) = max \{f.cd_{\mathcal{S}}(\boldsymbol{a}, \frac{R}{P}) | P \in Ass_R(M)\}.$

Proposition 3.9. Assume that a is an ideal of the local ring (R, m). Then $Hom_R(\frac{R}{m}, f_a^0(M)) \in S$ if and only if. $Hom_R(\frac{R}{m}, \widehat{M}^a) \in S$.

Proof. It is enough to consider the following isomorphisms

$$Hom_{R}\left(\frac{R}{\boldsymbol{m}}, f_{\boldsymbol{a}}^{0}(M)\right) \cong \lim_{n \in \mathbb{N}} Hom_{R}\left(\frac{R}{\boldsymbol{m}}, H_{\boldsymbol{m}}^{0}\left(\frac{M}{\boldsymbol{a}^{n}M}\right)\right) \cong \lim_{n \in \mathbb{N}} Hom_{R}\left(\frac{R}{\boldsymbol{m}}, \frac{M}{\boldsymbol{a}^{n}M}\right)$$
$$\cong Hom_{R}\left(\frac{R}{\boldsymbol{m}}, \lim_{n \in \mathbb{N}} \frac{M}{\boldsymbol{a}^{n}M}\right) \cong Hom_{R}\left(\frac{R}{\boldsymbol{m}}, \widehat{M}^{\boldsymbol{a}}\right).$$

Acknowledgements

The authors would like to thank the referees for their helpful comments.

References

- 1. M. P. Brodmann, R. Y. Sharp, "Local cohomology: An Algebraic introduction with geometric application", Cambridge University Press (1998).
- A. Grothendick, "Local cohomology, Notes by R.Hartshorne", lect. Notes in Math., 20, Springer (1966).
- 3. P. Schenzel, "On formal local cohomology and connectedness", J. Algebra, 315 (2007) 894-923.
- 4. M.Asgharzadeh, K. Divaani-Aazar, "Finiteness properties of formal local cohomology modules and Cohen-Macaulayness", Comm. in Algebra, 39, (2011) 1082-1103.
- 5. M. Eghbali, "On Artinianness of formal local cohomology, colocalization and coassociated primes", Journal Math. Scand (2012) to appear.
- Yan Gu, "The Artinianness of formal local cohomology modules", to appear in Bull. Malay. Math. Soc.
- 7. M. Asgharzadeh, M. Tousi, "A unified approach to local cohomology modules using serre classes", Canadian Math. Bull., Vol.53, no.1 (2010)1-10.
- G. Kempf, "The Hochster-Roberts Theorem of invariant theory", Michigan Math. J.26 (1), (1979) 19-32.
- J. J. Rotman, "An Introduction to homological algebra", Pure and Applied Mathematics 85. Academic Press, Inc., New York (1979).